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Abstract

The rotation effect on the characteristics of waves propagating in a piezoelectric plate is studied in the framework of

linear piezoelectricity including Coriolis and centrifugal forces. The rotation sensitivity of the wave dispersion relations

is analyzed in details for polarized ceramic plates and for the lowest thickness-shear and the lowest thickness-twist

waves because of the particular importance of these modes for gyroscope applications. The analysis shows that the

frequency shifts monotonically with the increasing rotation rate and the rotation sensitivity of long waves is sub-

stantially greater than that of short waves. Generally, plates with shorted electrode surfaces have higher rotation

sensitivity than plates with free-charge surfaces. For long waves and for small rotation rate relative to the wave fre-

quency, the frequency shifts with rotation rate, linearly for plates with shorted electrode surfaces and nonlinearly with a

nearly flat initial tangent for plates with free-charge surfaces. These rotation sensitivity characteristics are of interest for

the development of rotation sensors and other piezoelectric devices for which frequency insensitivity to rotation is

desired.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Characteristics of waves propagating in solids and their dependence upon various geometric and
physical parameters have been under continued study. The effects of pre-stress, acceleration, and tem-
perature variation, etc., on wave speed or frequency provide the foundation for the development of many
acoustic sensors (White, 1998). Particularly, frequency shifts due to rotation have been used to make gy-
roscopes, i.e., angular rate sensors, see Tiersten et al. (1980, 1981), Lao (1980), Clarke and Burdess (1994),
and Yang et al. (1988) for example. These sensors may operate with bulk waves in plates and rings (Tiersten
et al., 1981; Yang et al., 1988), or surface waves over a half-space (Tiersten et al., 1980; Lao, 1980; Clarke

International Journal of Solids and Structures 39 (2002) 5241–5251

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +1-909-787-5190; fax: +1-909-787-3188.

E-mail address: qjiang@engr.ucr.edu (Q. Jiang).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683 (02 )00375-X

mail to: qjiang@engr.ucr.edu


and Burdess, 1994). For sensor applications, frequency shifts need to be maximized through design for high
sensitivity. On the other hand, there are many resonant piezoelectric devices, such as those mounted on
moving objects for timing and frequency control, for which a stable working frequency insensitive to
motion or other changes in the working environment is desired, as investigated by Tiersten and Shick (1988)
and Shick et al. (1989). The development of such devices requires the understanding of the mechanical
characteristics of rotating piezoelectric bodies, for the purpose of either making use of the rotation-induced
frequency shift or avoiding it. The present study focuses on the rotation effect upon waves propagation in
piezoelectric plates.
Propagation of waves in piezoelectric plates has been an active research subject for several decades

because of the applications in piezoelectric transducers, resonators, filters and other devices. A number of
exact solutions of the three-dimensional dynamic equations have been obtained for widely used materials,
such as polarized ceramics (Tiersten, 1963a,b; Onoe et al., 1963; Bleustein, 1969), various crystal cuts of
quartz (Tiersten, 1963a; Schmidt, 1977a,b), and materials of other symmetries (Paul and Renganathan,
1985; Paul and Raman, 1991; Stewart and Yong, 1994). These solutions include thickness vibrations
(Tiersten, 1963a; Onoe et al., 1963) and waves propagating within the plane of the plate (Tiersten, 1963b;
Bleustein, 1969; Paul, 1968; Paul et al., 1983; Schmidt, 1977a,b; Syngellakis and Lee, 1993). From the
viewpoint of the three-dimensional theory, thickness vibration modes of a plate can be viewed as waves
propagating along the thickness direction of the plate and are bounced back and forth between the two
major faces of the plate, with the wave vector parallel to the thickness direction. These thickness waves or
vibration modes can exist only in infinite plates theoretically, and they are the idealized working modes of
many resonant piezoelectric devices. In reality, due to the finite size of a plate-like device, pure thickness
modes are not possible and the working modes of these devices are in fact related to three-dimensional
waves propagating slightly off the thickness direction of the plate, for which the wave vector has a small
component within the plane of the plate, called the in-plane or transverse component. These waves have
been referred to as essentially thickness waves, or transversely varying thickness waves. On the other hand,
from the viewpoint of the plate model, they are long waves propagating within the plane of the plate, with
the in-plane wavelength much larger than the plate thickness. Understanding of the long waves is important
for piezoelectric plate device applications. For instance, the in-plane wavelength is closely related to the
dimensions of a plate device, and the frequency is essentially determined by the plate thickness.
Pure thickness vibration of a piezoelectric plate rotating about its normal at a constant rate has been

studied in Bleustein (1968) from the viewpoint of the three-dimensional theory. To study the rotation effect
upon the characteristics of waves propagating within the plane of a piezoelectric plate, we present in this
paper a theoretical analysis on waves propagating in a piezoelectric plate that rotates about its normal at a
constant angular rate. We begin in Section 2 with a general formulation of this phenomenon for piezo-
electric materials of general material anisotropy. We then present in Section 3 a solution procedure leading
to the frequency equation that determines the frequencies of various waves propagating in a piezoelectric
plate rotating about its normal at a constant rate. We devote Section 4 to the solutions of the frequency
equation for polarized ceramics and the implications of these solutions concerned with the rotation effect
upon the characteristics of the plate waves.

2. Formulation of the problem

Consider an unbounded piezoelectric plate of thickness 2h, rotating at a constant angular rate X about
its normal, as schematically illustrated in Fig. 1. The plate is assumed to undergo small amplitude vibra-
tions in the system of Cartesian coordinates xi, attached to the rotating plate, with the x2 axis along the
normal of the plate. The dynamic equations of linear piezoelectricity (Tiersten, 1969) with Coriolis and
centrifugal forces take the following form in this coordinate system:
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cijkluk;jl þ ekij/;jk ¼ q½€uui þ 2eijkXj _uuk þ ðXiXjuj � XjXjuiÞ�; eijkuj;ik � eij/;ij ¼ 0; ð2:1Þ

where ðX1;X2;X3Þ ¼ ð0;X; 0Þ, and we denote by ui the mechanical displacements and by / the electric
potential. cijkl, ekij and eij stand for the elastic, piezoelectric and dielectric constants, and q for the mass
density, respectively. The summation convention for repeated tensor indices and the convention that a
comma followed by an index denotes partial differentiation with respect to the coordinate associated with
the index are adopted. The indices i, j, k, and l are ranged from 1 to 3. A superimposed dot represents time
derivative. With the compressed matrix notation (Tiersten, 1969), the material constants cijkl and eijk in (2.1)
can be represented by matrices cpq and eip, with the convention that p, q ¼ 1; . . . ; 6. Similarly, the strain
tensor Sij and the stress tensor Tij can be represented by Sp and Tq. Over the major surfaces of the plate
(x2 ¼ �h), the following traction-free mechanical boundary conditions are always assumed

T2jð�hÞ ¼ ½c2jkluk;l þ ek2j/;k�x2¼�h ¼ 0; ð2:2Þ

where the linear piezoelectric constitutive relations (Tiersten, 1969) have been used. The commonly used
electrical boundary conditions on the plate surfaces are a pair of shorted and grounded electrodes for which

/ðhÞ ¼ /ð�hÞ ¼ 0; ð2:3Þ
or a pair of unelectroded and charge-free surfaces for which

D2ð�hÞ ¼ ½e2jkuj;k � e2j/;j�x2¼�h ¼ 0: ð2:4Þ

For an unelectroded surface, the effect of the electric field in the surrounding space can be considered by
requiring that both the electrical potential and the normal component D2 of the dielectric displacement
vector cross the interface continuously. In the present discussion, the electrodes are assumed to be so thin
that their mechanical effects can be neglected. The above equations and boundary conditions are homo-
geneous, and constitute an eigenvalue problem. We consider straight-crested waves propagating in the x1
direction with o=ox3 ¼ 0. Then (2.1) assumes the following form

c11u1;11 þ c12u2;21 þ c14u3;21 þ c15u3;11 þ c16ðu1;21 þ u2;11Þ þ e11/;11 þ e21/;21 þ c16u1;12

þ c26u2;22 þ c46u3;22 þ c56u3;12 þ c66ðu1;22 þ u2;12Þ þ e16/;12 þ e26/;22 ¼ q€uu1 þ 2qX _uu3 � qX2u1;

c16u1;11 þ c26u2;21 þ c46u3;21 þ c56u3;11 þ c66ðu1;21 þ u2;11Þ þ e16/;11 þ e26/;21

þ c12u1;12 þ c22u2;22 þ c24u3;22 þ c25u3;12 þ c26ðu1;22 þ u2;12Þ þ e12/;12 þ e22/;22 ¼ q€uu2;

c15u1;11 þ c25u2;21 þ c45u3;21 þ c55u3;11 þ c56ðu1;21 þ u2;11Þ þ e15/;11 þ e25/;21 þ c14u1;12

þ c24u2;22 þ c44u3;22 þ c45u3;12 þ c46ðu1;22 þ u2;12Þ þ e14/;12 þ e24/;22 ¼ q€uu3 � 2qX _uu1 � X2u3;

e11u1;11 þ e12u2;21 þ e14u3;21 þ e15u3;11 þ e16ðu1;21 þ u2;11Þ � e11/;11 � e12/;21

þ e21u1;12 þ e22u2;22 þ e24u3;22 þ e25u3;12 þ e26ðu1;22 þ u2;12Þ � e12/;12 � e22/;22 ¼ 0:

ð2:5Þ

The boundary conditions (2.2)–(2.4) also take simpler forms correspondingly.

Fig. 1. Schematic illustration of a piezoelectric plate rotating about its normal.
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3. Solution procedure

We seek solutions in the following form:

ujðx; tÞ ¼ Aje
kgx2eiðkx1�xtÞ;

/ðx; tÞ ¼ A4ekgx2eiðkx1�xtÞ;
ð3:1Þ

where k and x are the wave number in the x1 direction and the time frequency, respectively. gk is related
to the wave number in the x2 direction. Aj (j ¼ 1; 2; 3) and A4 are complex constants, representing the
wave amplitude. The complex notation is adopted with the real parts representing the physical quantities
of interest. Substitution of (3.1) into (2.5) leads to the following four linear algebraic equations for Aj

and A4:

½qðx2 þ X2Þ þ k2ðg2c66 þ i2gc16 � c11Þ�A1 þ k2ðg2c26 þ igc66 þ igc12 � c16ÞA2
þ ½qi2Xx þ k2ðg2c46 þ igc56 þ igc14 � c15Þ�A3 þ k2ðg2e26 þ ige21 þ ige16 � e11ÞA4 ¼ 0;

k2ðg2c26 þ igc21 þ igc66 � c16ÞA1 þ ½qx2 þ k2ðg2c22 þ i2gc26 � c66Þ�A2
þ k2ðg2c24 þ igc25 þ igc46 � c56ÞA3 þ k2ðg2e22 þ ige26 þ ige12 � e16ÞA4 ¼ 0;

½�qi2Xx þ k2ðg2c46 þ igc14 þ igc56 � c15Þ�A1 þ k2ðg2c24 þ igc46 þ igc25 � c56ÞA2
þ ½qðx2 þ X2Þ þ k2ðg2c44 þ i2gc45 � c55Þ�A3 þ k2ðg2e24 þ ige25 þ ige14 � e15ÞA4 ¼ 0;

ðg2e26 þ ige21 þ ige16 � e11ÞA1 þ ðg2e22 þ ige26 þ ige12 � e16ÞA2
þ ðg2e24 þ ige25 þ ige14 � e15ÞA3 � ðg2e22 þ i2ge12 � e11ÞA4 ¼ 0:

ð3:2Þ

For nontrivial solutions of Aj and/or A4, the determinant of the coefficient matrix of the above equations
must vanish, and this leads to a polynomial equation of degree eight for g. The coefficients of this poly-
nomial equation are generally complex. We denote the eight roots by gðmÞ, and the corresponding eigen-
vectors by ðAðmÞ

j ;A
ðmÞ
4 Þ, m ¼ 1; 2; . . . ; 8. Thus, the general wave solution to (2.5) in the form of (3.1) can be

written as

ui ¼
X8
m¼1

CðmÞA
ðmÞ
i e

kgðmÞx2eiðkx1�xtÞ; / ¼
X8
m¼1

CðmÞA
ðmÞ
4 e

kgðmÞx2eiðkx1�xtÞ; ð3:3Þ

where the constants CðmÞ (m ¼ 1; 2; . . . ; 8) are to be determined. Substituting (3.3) into the boundary con-
ditions (2.2) and (2.4) yields the following eight linear algebraic equations for CðmÞ

X8
m¼1

c12iA
ðmÞ
1

�
þ c22gðmÞA

ðmÞ
2 þ c24gðmÞA

ðmÞ
3 þ c25iA

ðmÞ
3 þ c26gðmÞA

ðmÞ
1 þ c26iA

ðmÞ
2 þ e12iA

ðmÞ
4 þ e22gðmÞA

ðmÞ
4

�

	 e�kgðmÞhCðmÞ ¼ 0; ð3:4aÞ

X8
m¼1

c16iA
ðmÞ
1

�
þ c26gðmÞA

ðmÞ
2 þ c46gðmÞA

ðmÞ
3 þ c56iA

ðmÞ
3 þ c66gðmÞA

ðmÞ
1 þ c66iA

ðmÞ
2 þ e16iA

ðmÞ
4 þ e26gðmÞA

ðmÞ
4

�

	 e�kgðmÞhCðmÞ ¼ 0; ð3:4bÞ
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X8
m¼1

c14iA
ðmÞ
1

�
þ c24gðmÞA

ðmÞ
2 þ c44gðmÞA

ðmÞ
3 þ c45iA

ðmÞ
3 þ c46gðmÞA

ðmÞ
1 þ c46iA

ðmÞ
2 þ e14iA

ðmÞ
4 þ e24gðmÞA

ðmÞ
4

�

	 e�kgðmÞhCðmÞ ¼ 0; ð3:4cÞ

X8
m¼1

e21iA
ðmÞ
1

�
þ e22gðmÞA

ðmÞ
2 þ e24gðmÞA

ðmÞ
3 þ e25iA

ðmÞ
3 þ e26gðmÞA

ðmÞ
1 þ e26iA

ðmÞ
2 � e12iA

ðmÞ
4 � e22gðmÞA

ðmÞ
4

�

	 e�kgðmÞhCðmÞ ¼ 0: ð3:4dÞ

If (2.3) is used instead of (2.4) and (3.4d) should be replaced by

X8
j¼1

A
ðmÞ
4 e

�kgðmÞhCðmÞ ¼ 0: ð3:5Þ

For nontrivial solutions of CðmÞ, the determinant of the coefficient matrix of (3.4a)–(3.4d) has to vanish, and
this leads to the frequency equation that determines the wave speed. We note that the eigenvalue problem
for x represented by (3.4a)–(3.4d) is for an unbounded plate. A basic feature of an eigenvalue problem over
an unbounded domain is that it usually has a continuous spectrum. That is, any value of x is an eigenvalue
for which there exist waves with corresponding wavelengths. This is fundamentally different from the case
of pure thickness waves in which, although the plate itself is unbounded, the eigenvalue problem is in fact
defined over a finite domain, i.e., the plate thickness, and has a discrete spectrum.
We turn now to solve the eigenvalue problem (3.4a)–(3.4d) for frequency x using a iterative numerical

procedure. For a given real value of k, we choose a real trial value of x, and with this pair of known
tentative values of x and k, we determine the eigenvalues––the eight roots gðmÞ of the polynomial equation

of g, and the corresponding eigenvectors A
ðmÞ
j ;A

ðmÞ
4

� �
from (3.2). Substituting the so-determined gðmÞ and

A
ðmÞ
j ;A

ðmÞ
4

� �
into the determinant of the coefficient matrix of (3.4a)–(3.4d) results in a formally complex

determinant, or equivalently two real determinants (the real and imaginary parts of the complex deter-
minant). Our numerical analysis shows that one of the two real determinants is always so small that it
cannot be well captured within the machine precision and thus it should be treated as zero numerically. If
the above trial x cannot make the remaining determinant vanish, we choose another trial value of x to pair
the same k and we repeat the above procedure until the remaining determinant vanishes. The so-determined
x together with the given k defines a point on the dispersion curve in the k–x plane, and through this
procedure, we obtain a dispersion relation in the form of x ¼ xðkÞ, from which the phase velocity and
group velocity of the waves can be determined. One can expect that this dispersion relation have many
branches, analogous to the waves propagating in an elastic plate. We note the fact that a real x makes a
formally complex determinant (which in fact should be either real or pure imaginary because one of the two
real determinants is always numerically zero) vanish is consistent with what was previously observed in the
special cases discussed in Mindlin (1984) and Onoe et al. (1963), where an analytical approach can be
carried to the end, resulting in a real (or pure imaginary) determinant.
We recognize that the present discussion concerns with idealized materials without lossy mechanisms

and consequently, the waves propagate without attenuation. For lossy materials, a genuine complex wave
number is required to satisfy the complex frequency equation because of attenuation.

4. Numerical results and discussion

As a numerical example, we consider polarized ceramics PZT-5H for which we have, when the poling
direction is along the x3 axis (Auld, 1973)
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c11 ¼ 12:6; c33 ¼ 11:7; c44 ¼ 2:30;
c12 ¼ 7:95; c13 ¼ 8:41	 1010 N=m2; c66 ¼ ðc11 � c12Þ=2;
e15 ¼ 17:0; e31 ¼ �6:5; e33 ¼ 23:3 C=m2;
e11 ¼ 1700e0; e33 ¼ 1470e0; e0 ¼ 8:854	 10�12 F=m:

ð4:1Þ

The material constants for PZT-5H poled in any other directions can be determined by tensor transfor-
mation.
As a special case, we first determine the dispersion relations for a nonrotating plate (X ¼ 0) with the

poling direction along the x3 axis. In this case, u1 is coupled with u2, and u3 is coupled with /, but the two
groups do not couple each other. The dispersion relations for this case had been previously obtained an-
alytically in a close-form (Tiersten, 1963a,b; Bleustein, 1969). A comparison of the dispersion relations
generated by our computer code with the close-form solutions shows that the two are indeed identical. This
serves as a precaution measure for verification of our general formulation and the solution procedure.
There exist infinite number of branches of dispersion relations. The first nine branches are shown in Fig. 2
for a plate with a pair of shorted electrodes using the boundary conditions (2.3), and in Fig. 3 for an
unelectroded plate using the boundary conditions (2.4). In Figs. 2 and 3, the wave frequencies are nor-
malized by the lowest thickness-shear frequency of an isotropic elastic plate with shear modulus c44

Fig. 2. Dispersion relations of an electroded ceramic plate poled along the x3 direction (X ¼ 0).

Fig. 3. Dispersion relations of an unelectroded ceramic plate poled along the x3 direction (X ¼ 0).
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x0 ¼
p
2h

ffiffiffiffiffiffi
c44
q

r
: ð4:2Þ

The dispersion relations are labeled according to Mindlin (1984), along with the dominant displacement
component at small wave numbers, as follows:

E extension (u1),
F flexure (u2),
FS face-shear (u3),
TSh thickness-shear (u1),
TSt thickness-stretch (u2),
TT thickness-twist (u3),
R Rayleigh surface wave (u1 and u2),
BG Bleustein–Gulyaev surface wave (u3).

In Fig. 2, the three branches intercepting the origin are the so-called low frequency branches. They
represent the extensional, flexural, and face-shear waves. The other six branches are high-frequency
branches all of which have finite intercepts with the x axis. These intercepts are called cut-off frequencies,
below which the corresponding waves cannot propagate. Cut-off frequencies are in fact the frequencies of
pure thickness waves, which are the main result of Bleustein (1968) and a special case of the present study.
The six high frequency branches shown in the figures represent three thickness-shear waves, one thickness-
stretch wave, and two thickness-twist waves. One of the two dotted lines in Fig. 2 is the frequency-wave
number relation for the well-known Rayleigh surface wave, which can propagate over an elastic half-space
and is not dispersive. The other dotted line is the frequency-wave number relation for the Bleustein–
Gulyaev surface wave, which has only one displacement component u3 and can propagate over an pi-
ezoelectric half-space but does not have an elastic counterpart (Bleustein, 1968; Gulyaev, 1969; Lothe and
Barnett, 1976). It is seen from Fig. 2 that for short waves with larger k, the frequencies of the extensional
and flexural waves approach that of the Rayleigh surface wave, and we note that the corresponding waves
in elastic plates have the same feature (Eringen and Suhubi, 1975). Similarly, for short waves, the frequency
of the lowest thickness-twist wave approaches that of the Bleustein–Gulyaev wave, and we note that both
the waves are associated with the same displacement component u3.
For the case of an unelectroded plate, the corresponding Bleustein–Gulyaev wave in a half-space re-

quires the inclusion of the free space electric field, which is excluded by the boundary condition D2ð�hÞ ¼ 0
considered here. Therefore the corresponding Bleustein–Gulyaev wave does not exist in the present case,
and the single dotted line in Fig. 3 represents the Rayleigh wave. The second difference between Figs. 2 and
3 is that the thickness-twist waves in Fig. 3 have slightly higher frequencies than the corresponding waves in
Fig. 2. This is because thickness-twist waves are electrically coupled. When the plate is electroded, the
electric field components E1 and E3 have to vanish on the electrodes. Furthermore, when the electrodes are
shorted, the average of the electric field component E2 along the plate thickness has to be zero. The electric
field within a plate with two shorted electrodes on its major surfaces is therefore confined to certain degree.
The related piezoelectric stiffening effect due to electric fields, though small, tends to raise the resonant
frequencies. For materials of strong piezoelectric coupling such as polarized ceramics, the electrical
boundary conditions can influence the resonant frequencies through the distribution of the electric field in
the body and the related piezoelectric stiffening effect.
The effect of rotation on the dispersion relations, especially the branches representing the lowest

thickness-shear and the lowest thickness-twist waves, are of particular interest for gyroscope applications.
We thus plot the rotation-induced shifts of frequencies of the lowest thickness-shear and thickness-twist
waves in Fig. 4 for a ceramic plate poled along the x2 direction with shorted electrodes and in Fig. 5 for the
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corresponding unelectroded plate, respectively. The numerical results are plotted for 0:1 < kh=2p < 1,
because long waves with k ¼ 2p=k 
 h or kh=2p � 1 are usually used for plate-like piezoelectric devices
working with thickness-shear modes (Reese et al., 1989; Yang et al., 1988; Abe et al., 1998). The frequency
shift is defined by Dx ¼ xðXÞ � xð0Þ. In these figures, the relative frequency shifts jDx=xj are plotted, with
plus and minus signs indicating upward and downward shifts, respectively. Our analysis shows that the
frequency shifts increase monotonically with the rotation rate X when X is much smaller than the lowest
thickness-shear resonance frequency of the plate (approximately equal to x0), which is realistic for gyro-
scope applications. It is seen from Figs. 4 and 5 that the frequency shifts are relatively large for small wave
numbers, corresponding to long waves, and the frequency shifts diminish as the wave number k becomes
increasingly large. This indicates that long waves are more sensitive to rotation than short waves. We note
from Figs. 4 and 5 that the electroded plate has significantly larger frequency shifts than the unelectroded
plate, indicating the electroded plate has a higher rotation sensitivity for the wave modes considered. In
fact, our analysis shows that this feature remains true for ceramic plates poled along the x1 axis, or the x3

Fig. 4. Rotation-induced frequency shift for the lowest thickness-shear and thickness-twist waves versus the wave number, for an

electroded ceramic plate poled long its normal direction.

Fig. 5. Rotation-induced frequency shift for the lowest thickness-shear and thickness-twist waves versus the wave number, for an

unelectroded ceramic plate poled long its normal direction.
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axis, or along a direction bisecting the angle between the x1 and x3 axes. The corresponding numerical
results are not shown here because there are no characteristic differences from those shown in Figs. 4 and 5.
What has caught our particular attention is the observation that the frequency shifts do not decrease
monotonically with the increasing wave number for unelectroded plates poled along the x3 axis. Instead, the
frequency shift for each of these modes rises with the wave number initially, reaching a maximum before it
diminish as the wave number becomes increasingly large, as seen in Fig. 6. We note that this maximum is of
particular interest for development of rotation sensors.
We plot in Figs. 7 and 8 for electroded and unelectroded plates, respectively, the shift of frequencies of

the lowest thickness-shear and thickness-twist waves versus the rotation rate, for a fixed wave number:
kh=2p ¼ 0:1, representing reasonably long waves. The frequency shift increases with the rotation rate
monotonically in all the cases, which is desirable for rotation sensor applications. It is also evident from
Figs. 7 and 8 that the frequency shifts are substantially larger for plates poled along the x3 axis than for the
plates poled along the x1 axis, indicating greater rotation sensitivity. What is more important is the fact that
the curves in Fig. 7 both have finite initial slopes, indicating an initially linear relation between the rotation
rate and the frequency shift, which is particularly desirable for sensor applications. For the curves in Fig. 8,

Fig. 6. Rotation-induced frequency shift for the lowest thickness-shear and thickness-twist waves versus the wave number, for an

unelectroded ceramic plate poled long the x3 direction.

Fig. 7. Rotation-induced frequency shift for the lowest thickness-shear and thickness-twist waves versus the rotation rate, for an

electroded ceramic plate (kh=2p ¼ 0:1).
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the tangents at the origin appear to be essentially flat, suggesting that they should be avoided in rotation
sensor applications if frequency shifts are to be measured. However, this type of behavior is desirable for
applications in which a resonant frequency insensitive to rotation is required. In a previous study (Fang
et al., 2000), we have shown that the wave frequency may shift with rotation rate linearly or quadratically,
depending upon the material poling direction versus the rotation axis. In the present case where long waves
propagate within a piezoelectric plate, this characteristic of the frequency shift depends also upon the
electric boundary conditions on the major faces of the plate.

5. Conclusion

The characteristics of the dispersion relations of waves propagating in a polarized ceramic plate rotating
about its normal at a constant rate are presented. The rotation sensitivity is analyzed in details for the
lowest thickness-shear and the lowest thickness-twist waves because of the particular importance of these
modes for gyroscope applications. The frequency shifts monotonically with the increasing rotation rate and
the rotation sensitivity of long waves is substantially greater than that of short waves. Generally, plates with
shorted electrode surfaces have higher rotation sensitivity than plates with free-charge surfaces. For long
waves and for small rotation rate relative to the wave frequency, the frequency shifts with rotation rate,
linearly for plates with shorted electrode surfaces and nonlinearly with a nearly flat initial tangent for plates
with free-charge surfaces. These rotation sensitivity characteristics are of interest for the development of
rotation sensors and other piezoelectric devices for which frequency insensitivity to rotation is desired.
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